login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A246041 Decimal expansion of a constant related to A173938. 1
6, 9, 4, 8, 1, 9, 3, 0, 0, 8, 6, 6, 7, 3, 0, 5, 3, 6, 2, 6, 7, 1, 9, 2, 7, 5, 0, 6, 2, 0, 3, 5, 2, 5, 1, 2, 7, 7, 0, 2, 1, 1, 6, 9, 6, 8, 6, 7, 2, 4, 4, 1, 5, 2, 8, 8, 9, 4, 4, 2, 3, 3, 8, 9, 0, 2, 6, 6, 9, 5, 9, 2, 3, 9, 8, 3, 0, 6, 5, 4, 5, 6, 1, 0, 6, 6, 5, 9, 6, 4, 6, 1, 4, 3, 9, 8, 0, 3, 3, 9, 9, 6, 6, 2, 4, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..105.

FORMULA

Equals lim n -> infinity (A173938(n)/n!)^(1/n).

Root of the equation sqrt(2*Pi)*(erfi(1/sqrt(2)) + erfi((1/x-1)/sqrt(2))) = 2*exp(1/2).

EXAMPLE

0.694819300866730536267192750620352512770211696867244152889...

MAPLE

evalf(solve(sqrt(2*Pi)*(erfi(1/sqrt(2)) + erfi((1/x-1)/sqrt(2))) = 2*exp(1/2), x), 100)

MATHEMATICA

RealDigits[x /.FindRoot[2*Sqrt[E] - Sqrt[2*Pi]*Erfi[1/Sqrt[2]] - Sqrt[2*Pi] * Erfi[(-1 + 1/x)/Sqrt[2]], {x, 1/2}, WorkingPrecision -> 120]][[1]]

CROSSREFS

Cf. A173938.

Sequence in context: A073240 A019853 A007332 * A131691 A258504 A273816

Adjacent sequences:  A246038 A246039 A246040 * A246042 A246043 A246044

KEYWORD

nonn,cons

AUTHOR

Vaclav Kotesovec, Aug 23 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 22 21:29 EDT 2021. Contains 345393 sequences. (Running on oeis4.)