OFFSET
1,3
COMMENTS
2*Sum_{k>=1} a(k-1)/fallfac(n,k) = -1/n + Sum_{k>=1} (1 + a(k-1))/n^k, with the falling factorials fallfac(n,k) = Product_{j=0..k-1}(n-j). - Vaclav Kotesovec, Aug 04 2015
LINKS
D. Barsky, J.-P. Bézivin, p-adic Properties of Lengyel's Numbers, Journal of Integer Sequences, 17 (2014), #14.7.3. See Y_n.
FORMULA
a(n) ~ (-1)^(n+1) * c * n!^2 / (n^(1-log(2)/3) * (2*log(2))^n), where c = A260932 = 0.9031646749584662473216609915945142350500875792441051556... . - Vaclav Kotesovec, Aug 04 2015
MAPLE
with(combinat);
Y:=proc(n) option remember; local k; if n=1 then 1 else add(stirling1(n, k)*Y(k), k=1..n-1); fi; end;
[seq(Y(n), n=1..35)];
MATHEMATICA
Clear[a]; a[1] = 1; a[n_] := a[n] = Sum[StirlingS1[n, k]*a[k], {k, 1, n-1}]; Table[a[n], {n, 1, 20}] (* Vaclav Kotesovec, Aug 04 2015 *)
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Aug 22 2014
STATUS
approved