Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Mar 03 2024 18:59:46
%S 1,7,29,103,373,1407,5277,19639,73157,272943,1018157,3796839,14159317,
%T 52806751,196940221,734469911,2739138277,10215390607,38097452877,
%U 142081224135,529879903477,1976142458303,7369856791005,27485259393911,102503957075973,382279865222383,1425680525146477,5316955307198503
%N G.f.: (1+2x)(1+2x+4x^2)/(1-3x-8x^3-8x^4).
%C This is the subsequence A246039(2^n-1), n >= 0.
%H Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, <a href="http://arxiv.org/abs/1503.01796">A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata</a>, arXiv:1503.01796, 2015; see also the <a href="http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/CAcount.html">Accompanying Maple Package</a>.
%H Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, <a href="http://arxiv.org/abs/1503.04249">Odd-Rule Cellular Automata on the Square Grid</a>, arXiv:1503.04249, 2015.
%H N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: <a href="https://vimeo.com/119073818">Part 1</a>, <a href="https://vimeo.com/119073819">Part 2</a>
%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168, 2015
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3, 0, 8, 8).
%p -(2*x+1)*(4*x^2+2*x+1)/(8*x^4+8*x^3+3*x-1);
%t LinearRecurrence[{3, 0, 8, 8}, {1, 7, 29, 103}, 28] (* _Jean-François Alcover_, Oct 09 2018 *)
%Y Cf. A246039.
%K nonn
%O 0,2
%A _N. J. A. Sloane_, Aug 21 2014