login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102485
a(n) = 5*3^n - 4*2^n.
2
1, 7, 29, 103, 341, 1087, 3389, 10423, 31781, 96367, 291149, 877543, 2640821, 7938847, 23849309, 71613463, 214971461, 645176527, 1936053869, 5809210183, 17429727701, 52293377407, 156888520829, 470682339703, 1412080573541, 4236308829487, 12709060706189
OFFSET
0,2
REFERENCES
B. M. E. Moret and H. D. Shapiro, Algorithms from P to NP, Benjamin/Cummings, Vol. 1, 1991; p. 63.
FORMULA
a(n) = 5*a(n - 1) - 6*a(n - 2).
G.f.: (1+2*x)/((1-2*x)*(1-3*x)). - Colin Barker, Jan 14 2012
a(n) = A217764(n,8). - Ross La Haye, Mar 27 2013
a(n) = A001047(n+1)+2*A001047(n). - R. J. Mathar, May 14 2024
MAPLE
a := proc(n) option remember; if n = 0 then RETURN(1) end if; if n = 1 then RETURN(7) end if; 5*a(n - 1) - 6*a(n - 2); end proc;
MATHEMATICA
LinearRecurrence[{5, -6}, {1, 7}, 30] (* Vincenzo Librandi, Jan 15 2012 *)
Table[5*3^n-4*2^n, {n, 0, 30}] (* Harvey P. Dale, Jul 16 2024 *)
PROG
(Magma) I:=[1, 7]; [n le 2 select I[n] else 5*Self(n-1)-6*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jan 15 2012
(PARI) a(n)=5*3^n-4<<n \\ Charles R Greathouse IV, Jan 15 2012
CROSSREFS
Sequence in context: A193655 A369805 A227086 * A246038 A049349 A124828
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 25 2005
EXTENSIONS
New definition from Ralf Stephan, May 17 2007
STATUS
approved