login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193655
Q-residue of the triangle p(n,k)=floor(1/2+(n+1)/(n+k+2)/2), 0<=k<=n, where Q is the triangular array (t(i,j)) given by t(i,j)=1. (See Comments.)
2
1, 7, 29, 94, 280, 765, 2023, 5116, 12710, 30715, 73381, 172026, 400036, 917497, 2091683, 4718584, 10594978, 23592951, 52341409, 115343350, 253405856
OFFSET
0,2
COMMENTS
For the definition of Q-residue, see A193649.
FORMULA
Conjecture: G.f.: ( -1-2*x+3*x^2+9*x^3-8*x^4-4*x^5 ) / ( (1+x)*(2*x+1)*(x-1)^2*(2*x-1)^3 ). - R. J. Mathar, Feb 19 2015
MATHEMATICA
q[n_, k_] := 1;
r[0] = 1; r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}]
p[n_, k_] := Floor[1/2 + (n + 1) (n + k + 2)/2]
v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}]
Table[v[n], {n, 0, 20}] (* A193655 *)
TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]]
Table[r[k], {k, 0, 8}]
TableForm[Table[p[n, k], {n, 0, 4}, {k, 0, n}]]
CROSSREFS
Sequence in context: A294843 A042609 A002941 * A369805 A227086 A102485
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 02 2011
STATUS
approved