login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151485
Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of n steps taken from {(-1, 0), (-1, 1), (0, -1), (0, 1), (1, 0), (1, 1)}.
0
1, 1, 6, 20, 95, 432, 2100, 10429, 52990, 273872, 1435464, 7610704, 40747432, 219972284, 1196042952, 6543872976, 36000272857, 199016494848, 1104987607068, 6159118520824, 34451516940832, 193323839813568, 1087995843781768, 6139413903894528, 34728866786674200, 196895381265884724
OFFSET
0,3
LINKS
M. Bousquet-Mélou and M. Mishna, Walks with small steps in the quarter plane, ArXiv 0810.4387 [math.CO], 2008.
FORMULA
G.f.: 1+6*Int(Int(Int(x*(14+Int((1-4*x-12*x^2)^(3/2)*((-160*x^4-176*x^3-56*x^2-8*x-1)*hypergeom([5/4, 7/4],[1],64*x^3*(2*x+1)/(8*x^2-1)^2)+4*x^2*(32*x^3-10*x^2-19*x-4)*hypergeom([5/4, 7/4],[2], 64*x^3*(2*x+1)/(8*x^2-1)^2))/((2*x+1)*(1-8*x^2)^(7/2)*x^2),x))/(1-4*x-12*x^2)^(5/2),x),x),x)/x^2. - Mark van Hoeij, Aug 27 2014
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[i, 1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n]]; Table[Sum[aux[0, k, n], {k, 0, n}], {n, 0, 25}]
CROSSREFS
Sequence in context: A226638 A274071 A246036 * A191424 A333048 A200538
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved