login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151483
Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of n steps taken from {(-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0)}.
1
1, 1, 4, 12, 48, 192, 832, 3712, 17152, 81152, 392192, 1928192, 9621504, 48623616, 248463360, 1282031616, 6672285696, 34993274880, 184793432064, 981947645952, 5247335399424, 28185150357504, 152104870084608, 824404913160192, 4486067252101120, 24501262150008832, 134274187559698432, 738200201575006208
OFFSET
0,3
LINKS
M. Bousquet-Mélou and M. Mishna, Walks with small steps in the quarter plane, ArXiv 0810.4387, 2008.
FORMULA
G.f.: ((1-6*x)*(1-4*x-12*x^2)^(1/2)-4*x^2+8*x-1)/(32*x^3). - Mark van Hoeij, Aug 20 2014
a(n) = sqrt(-1/3)*(-2)^n*hypergeom([1/2, n+4],[2],4/3)/(n+1). - Mark van Hoeij, Aug 23 2014
Conjecture: +(n+3)*a(n) -4*n*a(n-1) +12*(-n+1)*a(n-2)=0. - R. J. Mathar, Jun 14 2016
MAPLE
A151483 := proc(n)
coeftayl(((1-6*x)*(1-4*x-12*x^2)^(1/2)-4*x^2+8*x-1)/(32*x^3), x=0, n);
end proc:
seq(A151483(n), n=0..30); # Wesley Ivan Hurt, Aug 23 2014
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[i, 1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n]]; Table[Sum[aux[0, k, n], {k, 0, n}], {n, 0, 25}]
CoefficientList[Series[((1 - 6x)(1 - 4x - 12x^2)^(1/2) - 4x^2 + 8x - 1)/(32 x^3), {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 23 2014 *)
CROSSREFS
Sequence in context: A149385 A092898 A110594 * A355800 A192622 A324801
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved