Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Dec 04 2016 13:57:04
%S 1,1,4,12,48,192,832,3712,17152,81152,392192,1928192,9621504,48623616,
%T 248463360,1282031616,6672285696,34993274880,184793432064,
%U 981947645952,5247335399424,28185150357504,152104870084608,824404913160192,4486067252101120,24501262150008832,134274187559698432,738200201575006208
%N Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of n steps taken from {(-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0)}.
%H M. Bousquet-Mélou and M. Mishna, <a href="http://arxiv.org/abs/0810.4387">Walks with small steps in the quarter plane</a>, ArXiv 0810.4387, 2008.
%F G.f.: ((1-6*x)*(1-4*x-12*x^2)^(1/2)-4*x^2+8*x-1)/(32*x^3). - _Mark van Hoeij_, Aug 20 2014
%F a(n) = sqrt(-1/3)*(-2)^n*hypergeom([1/2, n+4],[2],4/3)/(n+1). - _Mark van Hoeij_, Aug 23 2014
%F Conjecture: +(n+3)*a(n) -4*n*a(n-1) +12*(-n+1)*a(n-2)=0. - _R. J. Mathar_, Jun 14 2016
%p A151483 := proc(n)
%p coeftayl(((1-6*x)*(1-4*x-12*x^2)^(1/2)-4*x^2+8*x-1)/(32*x^3), x=0, n);
%p end proc:
%p seq(A151483(n), n=0..30); # _Wesley Ivan Hurt_, Aug 23 2014
%t aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[i, 1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n]]; Table[Sum[aux[0, k, n], {k, 0, n}], {n, 0, 25}]
%t CoefficientList[Series[((1 - 6x)(1 - 4x - 12x^2)^(1/2) - 4x^2 + 8x - 1)/(32 x^3), {x, 0, 30}], x] (* _Wesley Ivan Hurt_, Aug 23 2014 *)
%K nonn,walk
%O 0,3
%A _Manuel Kauers_, Nov 18 2008