login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200538 Product of Jacobsthal and Motzkin numbers: a(n) = A001045(n+1)*A001006(n). 2
1, 1, 6, 20, 99, 441, 2193, 10795, 55233, 284735, 1494404, 7914270, 42360541, 228460935, 1241224182, 6784445340, 37288826697, 205937705799, 1142317727466, 6361104740100, 35548154733969, 199295884785459, 1120615326442269, 6318077793648075, 35710056983891367, 202297486497822121 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The g.f. for the Jacobsthal numbers is 1/(1-x-2*x^2) and the g.f. M(x) for the Motzkin numbers satisfy: M(x) = 1 + x*M(x) + x^2*M(x)^2.

LINKS

Table of n, a(n) for n=0..25.

EXAMPLE

G.f.: A(x) = 1 + x + 6*x^2 + 20*x^3 + 99*x^4 + 441*x^5 + 2193*x^6 +...

where A(x) = 1*1 + 1*1*x + 3*2*x^2 + 5*4*x^3 + 11*9*x^4 + 21*21*x^5 + 43*51*x^6 + 85*127*x^7 + 171*323*x^8 +...+ A001045(n+1)*A001006(n)*x^n +...

PROG

(PARI) {A001006(n)=polcoeff((1-x-sqrt((1-x)^2-4*x^2+x^3*O(x^n)))/(2*x^2), n)}

{A001045(n)=polcoeff( x/(1-x-2*x^2+x*O(x^n)), n)}

{a(n)=A001045(n+1)*A001006(n)}

CROSSREFS

Cf. A200375, A200539, A200540, A001045, A001006.

Sequence in context: A246036 A151485 A191424 * A238118 A211953 A266846

Adjacent sequences:  A200535 A200536 A200537 * A200539 A200540 A200541

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Nov 18 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 04:56 EST 2016. Contains 279034 sequences.