This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200538 Product of Jacobsthal and Motzkin numbers: a(n) = A001045(n+1)*A001006(n). 2
 1, 1, 6, 20, 99, 441, 2193, 10795, 55233, 284735, 1494404, 7914270, 42360541, 228460935, 1241224182, 6784445340, 37288826697, 205937705799, 1142317727466, 6361104740100, 35548154733969, 199295884785459, 1120615326442269, 6318077793648075, 35710056983891367, 202297486497822121 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The g.f. for the Jacobsthal numbers is 1/(1-x-2*x^2) and the g.f. M(x) for the Motzkin numbers satisfy: M(x) = 1 + x*M(x) + x^2*M(x)^2. LINKS EXAMPLE G.f.: A(x) = 1 + x + 6*x^2 + 20*x^3 + 99*x^4 + 441*x^5 + 2193*x^6 +... where A(x) = 1*1 + 1*1*x + 3*2*x^2 + 5*4*x^3 + 11*9*x^4 + 21*21*x^5 + 43*51*x^6 + 85*127*x^7 + 171*323*x^8 +...+ A001045(n+1)*A001006(n)*x^n +... PROG (PARI) {A001006(n)=polcoeff((1-x-sqrt((1-x)^2-4*x^2+x^3*O(x^n)))/(2*x^2), n)} {A001045(n)=polcoeff( x/(1-x-2*x^2+x*O(x^n)), n)} {a(n)=A001045(n+1)*A001006(n)} CROSSREFS Cf. A200375, A200539, A200540, A001045, A001006. Sequence in context: A246036 A151485 A191424 * A238118 A211953 A266846 Adjacent sequences:  A200535 A200536 A200537 * A200539 A200540 A200541 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 18 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.