This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200538 Product of Jacobsthal and Motzkin numbers: a(n) = A001045(n+1)*A001006(n). 2
 1, 1, 6, 20, 99, 441, 2193, 10795, 55233, 284735, 1494404, 7914270, 42360541, 228460935, 1241224182, 6784445340, 37288826697, 205937705799, 1142317727466, 6361104740100, 35548154733969, 199295884785459, 1120615326442269, 6318077793648075, 35710056983891367, 202297486497822121 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The g.f. for the Jacobsthal numbers is 1/(1-x-2*x^2) and the g.f. M(x) for the Motzkin numbers satisfy: M(x) = 1 + x*M(x) + x^2*M(x)^2. LINKS EXAMPLE G.f.: A(x) = 1 + x + 6*x^2 + 20*x^3 + 99*x^4 + 441*x^5 + 2193*x^6 +... where A(x) = 1*1 + 1*1*x + 3*2*x^2 + 5*4*x^3 + 11*9*x^4 + 21*21*x^5 + 43*51*x^6 + 85*127*x^7 + 171*323*x^8 +...+ A001045(n+1)*A001006(n)*x^n +... PROG (PARI) {A001006(n)=polcoeff((1-x-sqrt((1-x)^2-4*x^2+x^3*O(x^n)))/(2*x^2), n)} {A001045(n)=polcoeff( x/(1-x-2*x^2+x*O(x^n)), n)} {a(n)=A001045(n+1)*A001006(n)} CROSSREFS Cf. A200375, A200539, A200540, A001045, A001006. Sequence in context: A246036 A151485 A191424 * A238118 A211953 A266846 Adjacent sequences:  A200535 A200536 A200537 * A200539 A200540 A200541 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 18 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.