OFFSET
0,3
LINKS
FORMULA
G.f.: (1+x^2)^2*(1+x^3)/((1-x)*(1-x^2)).
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 5*x^3 + 9*x^4 + 12*x^5 + 16*x^6 + 20*x^7 +...
where A(x) = G(x/A(x)) and G(x) = A(x*G(x)) is the g.f. of A199257:
G(x) = 1 + x + 5*x^2 + 18*x^3 + 86*x^4 + 408*x^5 + 2075*x^6 +...
...
The logarithm of the g.f. A(x) equals the series:
log(A(x)) = (1 + 2^2*x + x^2)/A(x) * x +
(1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4)/A(x)^2 * x^2/2 +
(1 + 6^2*x + 15^2*x^2 + 20^2*x^3 + 15^2*x^4 + 6^2*x^5 + x^6)/A(x)^3 * x^3/3 +
(1 + 8^2*x + 28^2*x^2 + 56^2*x^3 + 70^2*x^4 + 56^2*x^5 + 28^2*x^6 + 8^2*x^7 + x^8)/A(x)^4 * x^4/4 +
(1 + 10^2*x + 45^2*x^2 + 120^2*x^3 + 210^2*x^4 + 252^2*x^5 + 210^2*x^6 + 120^2*x^7 + 45^2*x^8 + 10^2*x^9 + x^10)/A(x)^5 * x^5/5 +...
which involves the squares of binomial coefficients C(2*n,k).
PROG
(PARI) {a(n)=polcoeff((1+x^2)^2*(1+x^3)/((1-x)*(1-x^2) +x*O(x^n)), n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(k=0, n, binomial(2*m, k)^2 *x^k)/(A+x*O(x^n))^m *x^m/m))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 18 2011
STATUS
approved