login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200536
Triangle, read by rows of 2*n+1 terms, where row n lists the coefficients in (1+3*x+2*x^2)^n.
4
1, 1, 3, 2, 1, 6, 13, 12, 4, 1, 9, 33, 63, 66, 36, 8, 1, 12, 62, 180, 321, 360, 248, 96, 16, 1, 15, 100, 390, 985, 1683, 1970, 1560, 800, 240, 32, 1, 18, 147, 720, 2355, 5418, 8989, 10836, 9420, 5760, 2352, 576, 64, 1, 21, 203, 1197, 4809, 13923, 29953, 48639, 59906, 55692, 38472, 19152, 6496, 1344, 128
OFFSET
0,3
FORMULA
Central terms in rows form the central Delannoy numbers: T(n,n) = A001850(n).
T(2*n,n) = A190726(n).
T(n,n+1) = n*A006318(n), where A006318 form the large Schroeder numbers.
EXAMPLE
The triangle begins:
1;
1, 3, 2;
1, 6, 13, 12, 4;
1, 9, 33, 63, 66, 36, 8;
1, 12, 62, 180, 321, 360, 248, 96, 16;
1, 15, 100, 390, 985, 1683, 1970, 1560, 800, 240, 32;
1, 18, 147, 720, 2355, 5418, 8989, 10836, 9420, 5760, 2352, 576, 64;
1, 21, 203, 1197, 4809, 13923, 29953, 48639, 59906, 55692, 38472, 19152, 6496, 1344, 128;
1, 24, 268, 1848, 8806, 30744, 81340, 166344, 265729, 332688, 325360, 245952, 140896, 59136, 17152, 3072, 256; ...
where row n equals the coefficients in (1+x)^n*(1+2*x)^n.
PROG
(PARI) {T(n, k)=polcoeff((1+3*x+2*x^2+x*O(x^k))^n, k)}
{for(n=0, 10, for(k=0, 2*n, print1(T(n, k), ", ")); print(""))}
CROSSREFS
Cf. A001850 (central Delannoy numbers), A006318, A190726; related triangle: A118384.
Cf. A200537.
Sequence in context: A196843 A367023 A143778 * A164645 A115755 A300003
KEYWORD
nonn,tabf
AUTHOR
Paul D. Hanna, Nov 18 2011
STATUS
approved