login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054881
Number of walks of length n along the edges of an octahedron starting and ending at a vertex and also ( with a(0)=0 ) between two opposite vertices.
11
1, 0, 4, 8, 48, 160, 704, 2688, 11008, 43520, 175104, 698368, 2797568, 11182080, 44744704, 178946048, 715849728, 2863267840, 11453333504, 45812809728, 183252287488, 733007052800, 2932032405504, 11728121233408
OFFSET
0,3
FORMULA
a(n) = 4*A003683(n-1) + 0^n/2, n >= 0.
a(n) = (4^n + (-1)^n*2^(n+1) + 3*0^n)/6.
G.f.: (1/6)*(3 + 2/(1+2*x) + 1/(1-4*x)).
From L. Edson Jeffery, Apr 22 2015: (Start)
G.f.: (1-2*x-4*x^2)/((1+2*x)*(1-4*x)).
a(n) = 8*A246036(n-3) + 0^n/2, n >= 0. (End)
a(n) = 2^n*A001045(n-1) + (1/2)*[n=0] = 2^n*(2^(n-1) + (-1)^n)/3 + (1/2)*[n=0], n >= 0. - Ralf Steiner, Aug 27 2020, edited by M. F. Hasler, Sep 11 2020
E.g.f.: (1/6)*(exp(4*x) + 2*exp(-2*x) + 3). - G. C. Greubel, Feb 06 2023
MATHEMATICA
CoefficientList[Series[(1-2*x-4*x^2)/((1+2x)*(1-4x)), {x, 0, 40}], x] (* L. Edson Jeffery, Apr 22 2015 *)
LinearRecurrence[{2, 8}, {1, 0, 4}, 41] (* G. C. Greubel, Feb 06 2023 *)
PROG
(Magma) [(4^n+(-1)^n*2^(n+1)+3*0^n)/6: n in [0..30]]; // Vincenzo Librandi, Apr 23 2015
(SageMath) [(4^n + (-1)^n*2^(n+1) + 3*0^n)/6 for n in range(31)] # G. C. Greubel, Feb 06 2023
KEYWORD
nonn,walk,easy
AUTHOR
Paolo Dominici (pl.dm(AT)libero.it), May 23 2000
STATUS
approved