|
|
A054883
|
|
Number of walks of length n along the edges of a dodecahedron between two opposite vertices.
|
|
5
|
|
|
0, 0, 0, 0, 0, 6, 12, 84, 192, 882, 2220, 8448, 22704, 78078, 218988, 710892, 2048256, 6430794, 18837516, 58008216, 171619248, 522598230, 1555243404, 4705481220, 14051590080, 42357719586, 126740502252, 381253030704, 1142062255152, 3431411494062
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,6
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,10,-16,-25,30).
|
|
FORMULA
|
G.f.: (1/20)*(-4 + 5/(1-t) + 1/(1-3*t) + 4/(1+2*t) - 6/(1-5*t^2)).
a(n) = (5 +3^n +(-1)^n*2^(n+2) -3*(1+(-1)^n)*sqrt(5)^n)/20 for n>0.
G.f.: 6*x^5/((1-x)*(1+2*x)*(1-3*x)*(1-5*x^2)). - Colin Barker, Dec 21 2014
E.g.f.: (1/20)*(4*exp(-2*x) + 5*exp(x) + exp(3*x) - 6*cosh(sqrt(5)*x) - 4). - G. C. Greubel, Feb 07 2023
|
|
MATHEMATICA
|
LinearRecurrence[{2, 10, -16, -25, 30}, {0, 0, 0, 0, 0, 6}, 30] (* Harvey P. Dale, Nov 13 2021 *)
|
|
PROG
|
(PARI) concat([0, 0, 0, 0, 0], Vec(-6*x^5/((x-1)*(2*x+1)*(3*x-1)*(5*x^2-1)) + O(x^100))) \\ Colin Barker, Dec 21 2014
(Magma) [Round((5 +3^n +4*(-2)^n -3*(1+(-1)^n)*5^(n/2))/20): n in [0..30]]; // G. C. Greubel, Feb 07 2023
(SageMath)
def A054883(n): return (5 +3^n +4*(-2)^n -3*(1+(-1)^n)*5^(n/2))/20 -int(n==0)/5
[A054883(n) for n in range(41)] # G. C. Greubel, Feb 07 2023
|
|
CROSSREFS
|
Cf. A054881, A054882, A054884, A054885.
Sequence in context: A196253 A338563 A345271 * A005402 A128953 A181597
Adjacent sequences: A054880 A054881 A054882 * A054884 A054885 A054886
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Paolo Dominici (pl.dm(AT)libero.it), May 23 2000
|
|
STATUS
|
approved
|
|
|
|