The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A054883 Number of walks of length n along the edges of a dodecahedron between two opposite vertices. 1

%I

%S 0,0,0,0,0,6,12,84,192,882,2220,8448,22704,78078,218988,710892,

%T 2048256,6430794,18837516,58008216,171619248,522598230,1555243404,

%U 4705481220,14051590080,42357719586,126740502252,381253030704,1142062255152,3431411494062

%N Number of walks of length n along the edges of a dodecahedron between two opposite vertices.

%H Colin Barker, <a href="/A054883/b054883.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,10,-16,-25,30).

%F G.f.: -1/5-1/4/(t-1)-1/20/(3*t-1)+1/5/(2*t+1)+3/10/(5*t^2-1).

%F a(n) = (5+3^n+(-1)^n*2^(n+2)-3*(1+(-1)^n)*sqrt(5)^n)/20 for n>0.

%F G.f.: -6*x^5 / ((x-1)*(2*x+1)*(3*x-1)*(5*x^2-1)). - _Colin Barker_, Dec 21 2014

%t LinearRecurrence[{2,10,-16,-25,30},{0,0,0,0,0,6},30] (* _Harvey P. Dale_, Nov 13 2021 *)

%o (PARI) concat([0,0,0,0,0], Vec(-6*x^5/((x-1)*(2*x+1)*(3*x-1)*(5*x^2-1)) + O(x^100))) \\ _Colin Barker_, Dec 21 2014

%K nonn,easy

%O 0,6

%A Paolo Dominici (pl.dm(AT)libero.it), May 23 2000

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 21:14 EDT 2022. Contains 354110 sequences. (Running on oeis4.)