login
A054885
Number of walks of length n along the edges of an icosahedron between two opposite vertices.
5
0, 0, 0, 10, 40, 260, 1240, 6510, 32240, 162760, 812240, 4069010, 20337240, 101725260, 508587240, 2543131510, 12715462240, 63578287760, 317890462240, 1589457194010, 7947281087240, 39736429850260
OFFSET
0,4
FORMULA
G.f.: (1/12)*(1/(1-5*t) + 5/(1+t) - 6/(1-5*t^2)).
a(n) = (5^n + 5*(-1)^n - 3*(1 + (-1)^n)*sqrt(5)^n)/12.
a(n+1) = 5 * A030518(n) for n > 0.
a(n) = 4*a(n-1) + 10*a(n-2) - 20*a(n-3) - 25*a(n-4). - François Marques, Jul 10 2021
E.g.f.: (1/12)*(5*exp(-x) + exp(5*x) - 6*cosh(sqrt(5)*x)). - G. C. Greubel, Feb 07 2023
MATHEMATICA
LinearRecurrence[{4, 10, -20, -25}, {0, 0, 0, 10}, 41] (* G. C. Greubel, Feb 07 2023 *)
PROG
(Magma) [Floor((5^n+(-1)^n*5-3*(1+(-1)^n)*Sqrt(5)^n)/12): n in [0..30]]; // Vincenzo Librandi, Aug 24 2011
(PARI) a(n) = if(n%2, 5^n-5, 5^n+5-6*5^(n/2))/12; \\ François Marques, Jul 11 2021
(SageMath)
def A054885(n): return (5^n +5*(-1)^n -3*(1+(-1)^n)*5^(n/2))/12
[A054885(n) for n in range(41)] # G. C. Greubel, Feb 07 2023
CROSSREFS
KEYWORD
nonn,walk,easy
AUTHOR
Paolo Dominici (pl.dm(AT)libero.it), May 23 2000
STATUS
approved