login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061991
Number of ways to place 5 nonattacking queens on a 5 X n board.
13
0, 0, 0, 0, 0, 10, 40, 164, 568, 1614, 3916, 8492, 16852, 31100, 54068, 89428, 141812, 216932, 321700, 464348, 654548, 903532, 1224212, 1631300, 2141428, 2773268, 3547652, 4487692, 5618900, 6969308, 8569588, 10453172, 12656372, 15218500, 18181988, 21592508
OFFSET
0,6
LINKS
V. Kotesovec, Ways of placing non-attacking queens and kings..., part of "Between chessboard and computer", 1996, pp. 204 - 206.
FORMULA
G.f.: 2*x^5*(4*x^11 - 11*x^10 + 16*x^9 + 7*x^8 - 32*x^7 + 38*x^6 + 6*x^5 + 8*x^4 - 8*x^3 + 37*x^2 - 10*x + 5)/(x - 1)^6.
Recurrence: a(n) = 6*a(n - 1) - 15*a(n - 2) + 20*a(n - 3) - 15*a(n - 4) + 6*a(n - 5) - a(n - 6), n >= 17.
Explicit formula (V. Kotesovec, 1992): a(n) = n^5 - 30*n^4 + 407*n^3 - 3098*n^2 + 13104*n - 24332, n >= 11.
MATHEMATICA
CoefficientList[Series[2 x^5 (4 x^11 -11 x^10 + 16 x^9 + 7 x^8 - 32 x^7 + 38 x^6 + 6 x^5 + 8 x^4 - 8 x^3 + 37 x^2 - 10 x + 5) / (x-1)^6, {x, 0, 30}], x] (* Vincenzo Librandi, May 12 2013 *)
CROSSREFS
Sequence in context: A075060 A279219 A002066 * A060580 A118266 A054885
KEYWORD
nonn,easy
AUTHOR
Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 31 2001
STATUS
approved