|
|
A061988
|
|
Find smallest k such that k^n is a sum of n n-th powers, say k^n = T(n,1)^n + ... + T(n,n)^n. Sequence gives triangle of successive rows T(n,1), ..., T(n,n). T(n,1) = ... = T(n,n) = 0 indicates no solution exists.
|
|
1
|
|
|
1, 3, 4, 3, 4, 5, 30, 120, 272, 315, 19, 43, 46, 47, 67
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
REFERENCES
|
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, equation 21.11.2
David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, NY, 1986, p. 164.
|
|
LINKS
|
|
|
EXAMPLE
|
Rows: (1), (3, 4), (3, 4, 5), (30, 120, 272, 315), (19, 43, 46, 47, 67), ...
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
EXTENSIONS
|
A few particular solutions are known for k = 4: 651^4 = 240^4 + 340^4 + 430^4 + 599^4, 5281^4 = 1000^4 + 1120^4 + 3233^4 + 5080^4, 7703^4 = 2230^4 + 3196^4 + 5620^4 + 6995^4, ... The smallest one is 353^4 = 30^4 + 120^4 + 272^4 + 315^4.
|
|
STATUS
|
approved
|
|
|
|