login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061990
Number of ways to place 4 nonattacking queens on a 4 X n board.
15
0, 0, 0, 0, 2, 12, 46, 140, 344, 732, 1400, 2468, 4080, 6404, 9632, 13980, 19688, 27020, 36264, 47732, 61760, 78708, 98960, 122924, 151032, 183740, 221528, 264900, 314384, 370532, 433920, 505148, 584840, 673644, 772232, 881300, 1001568, 1133780, 1278704, 1437132
OFFSET
0,5
LINKS
V. Kotesovec, Ways of placing non-attacking queens and kings..., part of "Between chessboard and computer", 1996, pp. 204 - 206.
E. Lucas, Recreations mathematiques I, Albert Blanchard, Paris, 1992, p. 231.
FORMULA
G.f.: -2*x^4*(x^3-x^2+x+1)*(x^4+4*x^2+1)/(x-1)^5.
Recurrence: a(n)=5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5), n >= 12.
Explicit formula (H. Tarry, 1890): a(n)=n^4-18*n^3+139*n^2-534*n+840, n >= 7.
MATHEMATICA
Join[{0, 0, 0, 0, 2, 12, 46}, LinearRecurrence[{5, -10, 10, -5, 1}, {140, 344, 732, 1400, 2468}, 30]] (* Harvey P. Dale, Mar 06 2013 *)
CoefficientList[Series[-2 x^4 (x^3 - x^2 + x + 1) (x^4 + 4 x^2 + 1) / (x-1)^5, {x, 0, 40}], x] (* Vincenzo Librandi, May 02 2013 *)
PROG
(PARI) a(n)=if(n<7, [0, 0, 0, 0, 2, 12, 46][n+1], n^4-18*n^3+139*n^2-534*n+840) \\ Charles R Greathouse IV, Oct 21 2022
CROSSREFS
Cf. A061989.
Sequence in context: A123771 A046991 A188982 * A006742 A003993 A129018
KEYWORD
nonn,easy
AUTHOR
Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 29 2001
STATUS
approved