login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030517
Number of walks of length n between two vertices on an icosahedron at distance 1.
4
1, 2, 13, 52, 273, 1302, 6573, 32552, 163073, 813802, 4070573, 20345052, 101733073, 508626302, 2543170573, 12715657552, 63578483073, 317891438802, 1589458170573, 7947285970052, 39736434733073, 198682149251302, 993410770670573, 4967053731282552
OFFSET
1,2
FORMULA
a(n) = 2*a(n-1) + 2*A030518(n-1) + 5*a(n-2).
A030518(n) = 2*a(n-1) + 2*A030518(n-1) + 5*A030518(n-2).
From Emeric Deutsch, Apr 03 2004: (Start)
a(n) = 5^n/12 - (-1)^n/12 + (sqrt(5))^(n+1)/20 + (-sqrt(5))^(n+1)/20.
a(n) = 4*a(n-1) + 10*a(n-2) - 20*a(n-3) - 25*a(n-4) for n>=5. (End)
From Colin Barker, Oct 17 2016: (Start)
G.f.: x*(1 - 2*x - 5*x^2)/((1 + x)*(1 - 5*x)*(1 - 5*x^2)).
a(n) = (5^n - 1)/12 for n even.
a(n) = (6*5^((n-1)/2) + 5^n + 1)/12 for n odd. (End)
MATHEMATICA
LinearRecurrence[{4, 10, -20, -25}, {1, 2, 13, 52}, 24] (* Jean-François Alcover, Jul 12 2021 *)
PROG
(PARI) Vec(x*(1-2*x-5*x^2)/((1+x)*(1-5*x)*(1-5*x^2)) + O(x^30)) \\ Colin Barker, Oct 17 2016
CROSSREFS
Cf. A030518.
Sequence in context: A241892 A037383 A034476 * A048502 A177077 A144235
KEYWORD
nonn,walk,easy
STATUS
approved