OFFSET
1,2
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (4,10,-20,-25).
FORMULA
a(n) = 2*a(n-1) + 2*A030518(n-1) + 5*a(n-2).
From Emeric Deutsch, Apr 03 2004: (Start)
a(n) = 5^n/12 - (-1)^n/12 + (sqrt(5))^(n+1)/20 + (-sqrt(5))^(n+1)/20.
a(n) = 4*a(n-1) + 10*a(n-2) - 20*a(n-3) - 25*a(n-4) for n>=5. (End)
From Colin Barker, Oct 17 2016: (Start)
G.f.: x*(1 - 2*x - 5*x^2)/((1 + x)*(1 - 5*x)*(1 - 5*x^2)).
a(n) = (5^n - 1)/12 for n even.
a(n) = (6*5^((n-1)/2) + 5^n + 1)/12 for n odd. (End)
MATHEMATICA
LinearRecurrence[{4, 10, -20, -25}, {1, 2, 13, 52}, 24] (* Jean-François Alcover, Jul 12 2021 *)
PROG
(PARI) Vec(x*(1-2*x-5*x^2)/((1+x)*(1-5*x)*(1-5*x^2)) + O(x^30)) \\ Colin Barker, Oct 17 2016
CROSSREFS
KEYWORD
nonn,walk,easy
AUTHOR
STATUS
approved