OFFSET
0,4
COMMENTS
a(n) is the total number of non-isolated "1s" (consecutive 1s on 2 rows, 2 columns) that appear as 2 X 2 squares in the Thue-Morse sequence (another version starts with 1) logical matrices after n stages. See links for more details.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Kival Ngaokrajang, Illustration of initial terms
Wikipedia, Thue-Morse sequence
Index entries for linear recurrences with constant coefficients, signature (4,5,-20,-4,16).
FORMULA
G.f.: -x^2*(1-2*x+8*x^3) / ( (x-1)*(4*x-1)*(2*x+1)*(2*x-1)*(1+x) ). - R. J. Mathar, May 04 2014
18*a(n) = 4^n+7 -3*2^n +(-1)^n*(3+2^n), n>0. - R. J. Mathar, May 04 2014
MATHEMATICA
CoefficientList[Series[-x^2*(1 - 2*x + 8*x^3)/((x - 1)*(4*x - 1)*(2*x + 1)*(2*x - 1)*(1 + x)), {x, 0, 50}], x] (* G. C. Greubel, Oct 11 2017 *)
LinearRecurrence[{4, 5, -20, -4, 16}, {0, 0, 1, 2, 13, 50}, 30] (* Harvey P. Dale, Nov 05 2022 *)
PROG
(PARI){a0=0; print1(a0, ", "); for (n=0, 50, b=ceil(2*(2^n-1)/3); a=floor(b^2/2); if(Mod(n, 2)==1, a=a+1); print1(a, ", "))}
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Kival Ngaokrajang, May 01 2014
STATUS
approved