login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241892
Total number of 2 X 2 squares appearing in the Thue-Morse sequence logical matrices (1, 0 version) after n stages.
2
0, 0, 1, 2, 13, 50, 221, 882, 3613, 14450, 58141, 232562, 931613, 3726450, 14911261, 59645042, 238602013, 954408050, 3817719581, 15270878322, 61083862813, 244335451250, 977343203101, 3909372812402, 15637496842013
OFFSET
0,4
COMMENTS
a(n) is the total number of non-isolated "1s" (consecutive 1s on 2 rows, 2 columns) that appear as 2 X 2 squares in the Thue-Morse sequence (another version starts with 1) logical matrices after n stages. See links for more details.
FORMULA
a(n) = A000982(A000975(n-1)) for n > 0, a(0) = 0.
G.f.: -x^2*(1-2*x+8*x^3) / ( (x-1)*(4*x-1)*(2*x+1)*(2*x-1)*(1+x) ). - R. J. Mathar, May 04 2014
18*a(n) = 4^n+7 -3*2^n +(-1)^n*(3+2^n), n>0. - R. J. Mathar, May 04 2014
MATHEMATICA
CoefficientList[Series[-x^2*(1 - 2*x + 8*x^3)/((x - 1)*(4*x - 1)*(2*x + 1)*(2*x - 1)*(1 + x)), {x, 0, 50}], x] (* G. C. Greubel, Oct 11 2017 *)
LinearRecurrence[{4, 5, -20, -4, 16}, {0, 0, 1, 2, 13, 50}, 30] (* Harvey P. Dale, Nov 05 2022 *)
PROG
(PARI){a0=0; print1(a0, ", "); for (n=0, 50, b=ceil(2*(2^n-1)/3); a=floor(b^2/2); if(Mod(n, 2)==1, a=a+1); print1(a, ", "))}
CROSSREFS
Sequence in context: A254784 A056305 A056297 * A037383 A034476 A030517
KEYWORD
nonn,easy
AUTHOR
Kival Ngaokrajang, May 01 2014
STATUS
approved