login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A241893 The total number of rectangles appearing in the Thue-Morse sequence logical matrices (1, 0 version) after n stages. 2
0, 0, 0, 8, 28, 120, 460, 1848, 7308, 29240, 116620, 466488, 1864588, 7458360, 29827980, 119311928, 477225868, 1908903480, 7635526540, 30542106168, 122168075148, 488672300600, 1954687804300 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

a(n) is the total number of non-isolated "1s" (consecutive 1s on 2 rows, 1 column or 1 row, 2 columns) that appear as rectangles in the Thue-Morse sequence (another version starts with 1) logical matrices after n stages. See links for more details.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Kival Ngaokrajang, Illustration of initial terms

Wikipedia, Thue-Morse sequence

Index entries for linear recurrences with constant coefficients, signature (4,5,-20,-4,16).

FORMULA

a(n) = A233036(A005578(n+1)).

G.f.: 4*x^3*(-2+x+8*x^2) / ( (x-1)*(4*x-1)*(2*x+1)*(2*x-1)*(1+x) ). - R. J. Mathar, May 04 2014

a(n) = (3*2^n+2*4^n-(-1)^n*(2^n+12)-28)/18, n>0. - R. J. Mathar, May 04 2014

MATHEMATICA

CoefficientList[Series[4*x^3*(-2 + x + 8*x^2)/((x - 1)*(4*x - 1)*(2*x + 1)*(2*x - 1)*(1 + x)), {x, 0, 50}], x] (* G. C. Greubel, Sep 29 2017 *)

PROG

(PARI){a0=0; a=0; b=1; print1(a0, ", ", a, ", "); for (n=2, 50, if(Mod(n, 2)==0, a = 2*(a*2-(4*b-4)) + 4*b; b=b*4-2, a=a*4-8); if(Mod(n, 2)==0, print1(a-4, ", "), print1(a, ", ")))}

CROSSREFS

Cf. A010059, A241684.

Sequence in context: A306545 A295914 A054857 * A200188 A255276 A110046

Adjacent sequences:  A241890 A241891 A241892 * A241894 A241895 A241896

KEYWORD

nonn,easy

AUTHOR

Kival Ngaokrajang, May 01 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 13 17:54 EDT 2020. Contains 335689 sequences. (Running on oeis4.)