login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total number of 2 X 2 squares appearing in the Thue-Morse sequence logical matrices (1, 0 version) after n stages.
2

%I #20 Nov 05 2022 19:46:44

%S 0,0,1,2,13,50,221,882,3613,14450,58141,232562,931613,3726450,

%T 14911261,59645042,238602013,954408050,3817719581,15270878322,

%U 61083862813,244335451250,977343203101,3909372812402,15637496842013

%N Total number of 2 X 2 squares appearing in the Thue-Morse sequence logical matrices (1, 0 version) after n stages.

%C a(n) is the total number of non-isolated "1s" (consecutive 1s on 2 rows, 2 columns) that appear as 2 X 2 squares in the Thue-Morse sequence (another version starts with 1) logical matrices after n stages. See links for more details.

%H G. C. Greubel, <a href="/A241892/b241892.txt">Table of n, a(n) for n = 0..1000</a>

%H Kival Ngaokrajang, <a href="/A241892/a241892_1.pdf">Illustration of initial terms</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Thue%E2%80%93Morse_sequence">Thue-Morse sequence</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (4,5,-20,-4,16).

%F a(n) = A000982(A000975(n-1)) for n > 0, a(0) = 0.

%F G.f.: -x^2*(1-2*x+8*x^3) / ( (x-1)*(4*x-1)*(2*x+1)*(2*x-1)*(1+x) ). - _R. J. Mathar_, May 04 2014

%F 18*a(n) = 4^n+7 -3*2^n +(-1)^n*(3+2^n), n>0. - _R. J. Mathar_, May 04 2014

%t CoefficientList[Series[-x^2*(1 - 2*x + 8*x^3)/((x - 1)*(4*x - 1)*(2*x + 1)*(2*x - 1)*(1 + x)), {x, 0, 50}], x] (* _G. C. Greubel_, Oct 11 2017 *)

%t LinearRecurrence[{4, 5, -20, -4, 16}, {0, 0, 1, 2, 13, 50}, 30] (* _Harvey P. Dale_, Nov 05 2022 *)

%o (PARI){a0=0;print1(a0,", "); for (n=0,50, b=ceil(2*(2^n-1)/3); a=floor(b^2/2); if(Mod(n,2)==1, a=a+1); print1(a,", "))}

%Y Cf. A010059, A241683.

%K nonn,easy

%O 0,4

%A _Kival Ngaokrajang_, May 01 2014