login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226638
Product of Pell and Lucas numbers.
2
0, 1, 6, 20, 84, 319, 1260, 4901, 19176, 74860, 292494, 1142459, 4462920, 17433181, 68099226, 266014100, 1039126224, 4059116419, 15856045380, 61938144041, 241947712356, 945115407340, 3691885043874, 14421535219799, 56334548849040, 220058498917081
OFFSET
0,3
FORMULA
Recurrence: a(n) = 2a(n-1) + 7a(n-2) + 2a(n-3) - a(n-4), n>3, starting 0,1,6,20.
G.f.: x*(x^2 + 4*x + 1)/(x^4 - 2*x^3 - 7*x^2 - 2*x + 1).
a(n) = A000129(n) * A000032(n).
MATHEMATICA
LinearRecurrence[{2, 7, 2, -1}, {0, 1, 6, 20}, 30] (* Harvey P. Dale, Sep 26 2016 *)
PROG
(PARI) pell(n)=if(n<2, n>0, 2*pell(n-1)+pell(n-2))
lucas(n)=if(n<1, 2*(n>=0), fibonacci(n-1)+fibonacci(n+1))
a(n)=pell(n)*lucas(n)
(PARI) concat([0], Vec(x*(x^2+4*x+1)/(x^4-2*x^3-7*x^2-2*x+1)+O(x^66))) \\ Joerg Arndt, Sep 01 2013
CROSSREFS
Sequence in context: A118265 A204271 A255469 * A274071 A246036 A151485
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Sep 01 2013
STATUS
approved