login
A226641
Number of ways to express 2/n as Egyptian fractions in just three terms; i.e., 2/n = 1/x + 1/y + 1/z satisfying 1<=x<=y<=z.
6
1, 3, 8, 10, 12, 21, 17, 28, 26, 36, 25, 57, 20, 42, 81, 70, 25, 79, 32, 96, 86, 62, 42, 160, 53, 59, 89, 136, 33, 196, 37, 128, 103, 73, 185, 211, 32, 80, 160, 292, 40, 245, 40, 157, 235, 93, 60, 366, 85, 156, 147, 174, 42, 230, 223, 340, 143, 106, 76, 497, 34, 90, 331, 269, 206, 322, 50, 211, 175, 453, 72, 538, 37, 85, 332, 216, 260, 378, 69, 604, 167, 121, 79, 623, 204, 104, 203, 473, 59, 648, 253, 204, 166, 135, 318, 706, 46, 227, 427, 437
OFFSET
1,2
MATHEMATICA
a[n_] := Length@ Solve[ 2/n == 1/x + 1/y + 1/z && 1 <= x <= y <= z, {x, y, z}, Integers]; Array[a, 70]
CROSSREFS
See A073101 for the 4/n conjecture due to Erdős and Straus.
Sequence in context: A350667 A287371 A351872 * A212966 A074186 A064147
KEYWORD
nonn
AUTHOR
STATUS
approved