OFFSET
0,2
COMMENTS
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
FORMULA
A159955(a(n)) = 1.
Trisection: a(3*k) = 1 + 9*k, a(3*k+1) = 3 + 9*k, and a(3*k+3) = 8 + 9*k, for k >= 0.
G.f.: (1 + 2*x + 5*x^2 + x^3)/((1 - x)*(1 - x^3)).
a(n) = 1 + 3*n - 2*sin(2*n*Pi/3)/sqrt(3). - Stefano Spezia, Jan 30 2022
EXAMPLE
Rows of array {A347834(a(n), m)}_{m>=0}, with modulo 6 congruence:
n = 0: row 1: {1, 5, 21, 85, 341, 1365, 5461, ...} mod 6 = {repeat(1, 5, 3)},
n = 1: row 3: {7, 29, 117, 469, 1877, 7509, ...} mod 6 = {repeat(1, 5, 3)},
...
MATHEMATICA
Select[Range[0, 150], MemberQ[{1, 3, 8}, Mod[#, 9]] &] (* Amiram Eldar, Jan 29 2022 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jan 29 2022
STATUS
approved