login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350669
Numerators of Sum_{j=0..n} 1/(2*j+1), for n >= 0.
6
1, 4, 23, 176, 563, 6508, 88069, 91072, 1593269, 31037876, 31730711, 744355888, 3788707301, 11552032628, 340028535787, 10686452707072, 10823198495797, 10952130239452, 409741429887649, 414022624965424, 17141894231615609, 743947082888833412, 750488463554668427, 35567319917031991744, 250947670863258378883, 252846595191840484708, 13497714685925233086599
OFFSET
0,2
COMMENTS
For the denominators see A350670.
This sequence coincides with A025550(n+1), for n = 0, 1, ..., 37. See the comments there.
Thanks to Ralf Steiner for sending me a paper where this and similar sums appear.
LINKS
Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions. p.258, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. p. 258.
FORMULA
a(n) = numerator((Psi(n+3/2) + gamma + 2*log(2))/2), with the Digamma function Psi(z), and the Euler-Mascheroni constant gamma = A001620. See Abramowitz-Stegun, p. 258. 6.3.4.
a(n) = (1/2) * numerator of ( 2*H_{2*n+2} - H_{n+1} ), where H_{n} is the n-th Harmonic number. - G. C. Greubel, Jul 24 2023
MATHEMATICA
With[{H=HarmonicNumber}, Table[Numerator[2*H[2*n+2] -H[n+1]]/2 , {n, 0, 50}]] (* G. C. Greubel, Jul 24 2023 *)
PROG
(PARI) a(n) = numerator(sum(j=0, n, 1/(2*j+1))); \\ Michel Marcus, Mar 16 2022
(Magma) [Numerator((2*HarmonicNumber(2*n+2) - HarmonicNumber(n+1)))/2: n in [0..40]]; // G. C. Greubel, Jul 24 2023
(SageMath) [numerator(2*harmonic_number(2*n+2, 1) - harmonic_number(n+1, 1))/2 for n in range(41)] # G. C. Greubel, Jul 24 2023
CROSSREFS
Cf. A001620, A025547, A025550, A111877 (denominators), A350670.
Sequence in context: A083355 A141763 A025550 * A067545 A004041 A220353
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Mar 16 2022
STATUS
approved