The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A350669 Numerators of Sum_{j=0..n} 1/(2*j+1), for n >= 0. 6
 1, 4, 23, 176, 563, 6508, 88069, 91072, 1593269, 31037876, 31730711, 744355888, 3788707301, 11552032628, 340028535787, 10686452707072, 10823198495797, 10952130239452, 409741429887649, 414022624965424, 17141894231615609, 743947082888833412, 750488463554668427, 35567319917031991744, 250947670863258378883, 252846595191840484708, 13497714685925233086599 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS For the denominators see A350670. This sequence coincides with A025550(n+1), for n = 0, 1, ..., 37. See the comments there. Thanks to Ralf Steiner for sending me a paper where this and similar sums appear. LINKS Hugo Pfoertner, Table of n, a(n) for n = 0..100 Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions. p.258, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. p. 258. Comparison to A025550 using Plot 2. FORMULA a(n) = numerator((Psi(n+3/2) + gamma + 2*log(2))/2), with the Digamma function Psi(z), and the Euler-Mascheroni constant gamma = A001620. See Abramowitz-Stegun, p. 258. 6.3.4. a(n) = (1/2) * numerator of ( 2*H_{2*n+2} - H_{n+1} ), where H_{n} is the n-th Harmonic number. - G. C. Greubel, Jul 24 2023 MATHEMATICA With[{H=HarmonicNumber}, Table[Numerator[2*H[2*n+2] -H[n+1]]/2 , {n, 0, 50}]] (* G. C. Greubel, Jul 24 2023 *) PROG (PARI) a(n) = numerator(sum(j=0, n, 1/(2*j+1))); \\ Michel Marcus, Mar 16 2022 (Magma) [Numerator((2*HarmonicNumber(2*n+2) - HarmonicNumber(n+1)))/2: n in [0..40]]; // G. C. Greubel, Jul 24 2023 (SageMath) [numerator(2*harmonic_number(2*n+2, 1) - harmonic_number(n+1, 1))/2 for n in range(41)] # G. C. Greubel, Jul 24 2023 CROSSREFS Cf. A001620, A025547, A025550, A111877 (denominators), A350670. Sequence in context: A083355 A141763 A025550 * A067545 A004041 A220353 Adjacent sequences: A350666 A350667 A350668 * A350670 A350671 A350672 KEYWORD nonn,frac,easy AUTHOR Wolfdieter Lang, Mar 16 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 10:59 EDT 2023. Contains 365656 sequences. (Running on oeis4.)