login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111877
a(n) = denominator of 3*Sum_{j=0..n+1} 1/(2*j+1).
3
1, 5, 35, 105, 1155, 15015, 15015, 255255, 4849845, 4849845, 111546435, 557732175, 1673196525, 48522699225, 1504203675975, 1504203675975, 1504203675975, 55655536011075, 55655536011075, 2281876976454075, 98120709987525225
OFFSET
0,2
LINKS
FORMULA
a(n) = denominator of (3/2)*(digamma(n+5/2) + 2*log(2) + euler_gamma).
a(n) = denominator of ( 3*Sum_{j=0..n+1} 1/(2*j+1) ).
a(n) = (1/3) * denominator of ( 2*H_{2*n+4} - H_{n+2} ), where H_{n} is the n-th Harmonic number. - G. C. Greubel, Jul 24 2023
MATHEMATICA
f[x_]:= 2*x+1; a[1]= f[1]; a[n_]:= LCM[f[n], a[n-1]]; Array[a, 21]/3 (* Robert G. Wilson v, Jan 04 2013 *)
PROG
(Magma) [Denominator((2*HarmonicNumber(2*n+4) - HarmonicNumber(n+2)))/3: n in [0..40]]; // G. C. Greubel, Jul 24 2023
(SageMath) [denominator(2*harmonic_number(2*n+4, 1) - harmonic_number(n+2, 1))/3 for n in range(41)] # G. C. Greubel, Jul 24 2023
CROSSREFS
Cf. A001620, A025547, A350669 (numerators).
Sequence in context: A090294 A162540 A161199 * A179337 A053126 A096743
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Aug 19 2005
EXTENSIONS
Name edited by G. C. Greubel, Jul 24 2023
STATUS
approved