login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111878
a(n) = A111877(n+1)/5.
1
1, 7, 21, 231, 3003, 3003, 51051, 969969, 969969, 22309287, 111546435, 334639305, 9704539845, 300840735195, 300840735195, 300840735195, 11131107202215, 11131107202215, 456375395290815, 19624141997505045, 19624141997505045
OFFSET
0,2
LINKS
FORMULA
a(n) = (1/15)*denominator(digamma(n+7/2)/2 + log(2) + euler_gamma/2).
a(n) = denominator(f(n+2)/15), where f(n) = Sum_{j=0..n} 1/(2*j+1).
a(n) = (1/15) * denominator of ( 2*H_{2*n+6} - H_{n+3} ), where H_{n} is the n-th Harmonic number. - G. C. Greubel, Jul 24 2023
MATHEMATICA
With[{H=HarmonicNumber}, Table[Denominator[2*H[2*n+6] -H[n+3]]/15, {n, 0, 40}]] (* G. C. Greubel, Jul 24 2023 *)
PROG
(Magma) H:=HarmonicNumber; [Denominator((2*H(2*n+6) - H(n+3)))/15: n in [0..40]]; // G. C. Greubel, Jul 24 2023
(SageMath) h=harmonic_number; [denominator(2*h(2*n+6, 1) - h(n+3, 1))/15 for n in range(41)] # G. C. Greubel, Jul 24 2023
CROSSREFS
Sequence in context: A183938 A060146 A357673 * A133279 A192734 A220161
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Aug 19 2005
STATUS
approved