login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111876
Denominator of Sum_{k = 0..n} 1/((k+1)*(2*k+1)).
4
1, 6, 30, 420, 1260, 13860, 180180, 72072, 1225224, 116396280, 116396280, 2677114440, 13385572200, 5736673800, 166363540200, 10314539492400, 10314539492400, 72201776446800, 2671465728531600, 2671465728531600
OFFSET
0,2
LINKS
FORMULA
a(n) = denominator of ( digamma(n+3/2) - digamma(n+2) + 2*log(2) ).
a(n) = denominator of 2*(n+1)*Integral_{x = 0..1} x^n* log(1+sqrt(x)) dx.
a(n-1) = denominator( (1/n)*Sum_{k = 1..n} (n - k)/(n + k) ). - Peter Bala, Oct 10 2021
MAPLE
seq(denom( add(1/((k+1)*(2*k+1)), k = 0..n) ), n = 0..20); # Peter Bala, Oct 10 2021
MATHEMATICA
Table[Denominator[HarmonicNumber[2n+2] - HarmonicNumber[n+1]]/2, {n, 0, 30}]
PROG
(PARI) a(n) = denominator(sum(k=0, n, 1/((k+1)*(2*k+1)))); \\ Michel Marcus, Oct 10 2021
(Magma) [Denominator(HarmonicNumber(2*n+2) -HarmonicNumber(n+1))/2: n in [0..40]]; // G. C. Greubel, Jul 24 2023
(SageMath) [denominator(harmonic_number(2*n+2, 1) - harmonic_number(n+1, 1))/2 for n in range(41)] # G. C. Greubel, Jul 24 2023
CROSSREFS
Cf. A082687 (numerators), A117664.
Sequence in context: A332041 A201135 A369135 * A119634 A256545 A349981
KEYWORD
easy,nonn,frac
AUTHOR
Paul Barry, Aug 19 2005
STATUS
approved