login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A111877(n+1)/5.
1

%I #14 Sep 07 2024 01:14:24

%S 1,7,21,231,3003,3003,51051,969969,969969,22309287,111546435,

%T 334639305,9704539845,300840735195,300840735195,300840735195,

%U 11131107202215,11131107202215,456375395290815,19624141997505045,19624141997505045

%N a(n) = A111877(n+1)/5.

%H G. C. Greubel, <a href="/A111878/b111878.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = (1/15)*denominator(digamma(n+7/2)/2 + log(2) + euler_gamma/2).

%F a(n) = denominator(f(n+2)/15), where f(n) = Sum_{j=0..n} 1/(2*j+1).

%F a(n) = (1/15) * denominator of ( 2*H_{2*n+6} - H_{n+3} ), where H_{n} is the n-th Harmonic number. - _G. C. Greubel_, Jul 24 2023

%t With[{H=HarmonicNumber}, Table[Denominator[2*H[2*n+6] -H[n+3]]/15, {n, 0, 40}]] (* _G. C. Greubel_, Jul 24 2023 *)

%o (Magma) H:=HarmonicNumber; [Denominator((2*H(2*n+6) - H(n+3)))/15: n in [0..40]]; // _G. C. Greubel_, Jul 24 2023

%o (SageMath) h=harmonic_number; [denominator(2*h(2*n+6,1) - h(n+3,1))/15 for n in range(41)] # _G. C. Greubel_, Jul 24 2023

%Y Cf. A025547, A111877.

%K easy,nonn

%O 0,2

%A _Paul Barry_, Aug 19 2005