Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Sep 06 2024 22:22:13
%S 1,5,35,105,1155,15015,15015,255255,4849845,4849845,111546435,
%T 557732175,1673196525,48522699225,1504203675975,1504203675975,
%U 1504203675975,55655536011075,55655536011075,2281876976454075,98120709987525225
%N a(n) = denominator of 3*Sum_{j=0..n+1} 1/(2*j+1).
%H G. C. Greubel, <a href="/A111877/b111877.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = denominator of (3/2)*(digamma(n+5/2) + 2*log(2) + euler_gamma).
%F a(n) = denominator of ( 3*Sum_{j=0..n+1} 1/(2*j+1) ).
%F a(n) = (1/3) * denominator of ( 2*H_{2*n+4} - H_{n+2} ), where H_{n} is the n-th Harmonic number. - _G. C. Greubel_, Jul 24 2023
%t f[x_]:= 2*x+1; a[1]= f[1]; a[n_]:= LCM[f[n], a[n-1]]; Array[a, 21]/3 (* _Robert G. Wilson v_, Jan 04 2013 *)
%o (Magma) [Denominator((2*HarmonicNumber(2*n+4) - HarmonicNumber(n+2)))/3: n in [0..40]]; // _G. C. Greubel_, Jul 24 2023
%o (SageMath) [denominator(2*harmonic_number(2*n+4,1) - harmonic_number(n+2,1))/3 for n in range(41)] # _G. C. Greubel_, Jul 24 2023
%Y Cf. A001620, A025547, A350669 (numerators).
%K easy,nonn
%O 0,2
%A _Paul Barry_, Aug 19 2005
%E Name edited by _G. C. Greubel_, Jul 24 2023