login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of q^(-5/3) * c(q^2)^3 / (9 * c(q)) in powers of q where c() is a cubic AGM theta function.
3

%I #10 Sep 08 2022 08:46:06

%S 1,-1,2,0,3,-2,4,0,5,-5,8,0,7,-4,8,0,9,-8,10,0,14,-6,12,0,16,-14,14,0,

%T 15,-8,20,0,17,-14,18,0,19,-10,24,0,26,-21,22,0,23,-16,28,0,25,-20,32,

%U 0,32,-14,28,0,29,-28,30,0,38,-16,32,0,33,-31,40,0,40

%N Expansion of q^(-5/3) * c(q^2)^3 / (9 * c(q)) in powers of q where c() is a cubic AGM theta function.

%C Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

%H G. C. Greubel, <a href="/A232343/b232343.txt">Table of n, a(n) for n = 0..2500</a>

%F Expansion of q^(-5/3) * eta(q) * eta(q^6)^9 / (eta(q^2) * eta(q^3))^3 in powers of q.

%F Euler transform of period 6 sequence [-1, 2, 2, 2, -1, -4, ...].

%F a(n) = 1/6 * b(3*n + 5) where b() is multiplicative with b(2^e) = 2 - 2^e, b(3^e) = 0^e, b(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.

%F a(2*n) = A098098(n). a(4*n + 1) = - A033686(n). a(4*n + 3) = 0.

%e G.f. = 1 - x + 2*x^2 + 3*x^4 - 2*x^5 + 4*x^6 + 5*x^8 - 5*x^9 + 8*x^10 + ...

%e G.f. = q^5 - q^8 + 2*q^11 + 3*q^17 - 2*q^20 + 4*q^23 + 5*q^29 - 5*q^32 + ...

%t a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^6]^9 / (QPochhammer[ x^2] QPochhammer[ x^3])^3, {x, 0, n}];

%t a[ n_] := SeriesCoefficient[ (QPochhammer[ -x^3] QPochhammer[ x^12])^3 / (QPochhammer[ -x] QPochhammer[ x^4]), {x, 0, n}];

%t a[ n_] := If[ n < 0, 0, Times @@ (Which[# == 2, 2 - 2^#2,# == 3, 1, True, (#^(#2 + 1) - 1) / (# - 1)] & @@@ FactorInteger[3 n + 5]) / 6]; (* _Michael Somos_, Jul 09 2018 *)

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^6 + A)^9 / (eta(x^2 + A) * eta(x^3 + A))^3, n))};

%o (PARI) {a(n) = my(A, p, e); if( n<0, 0, n = 3*n + 5; A = factor(n); 1/6 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 2 - 2^e, p==3, 0, (p^(e+1) - 1) / (p - 1))))};

%o (Magma) Basis( ModularForms( Gamma0(18), 2), 210) [6]; /* _Michael Somos_, Jul 09 2018 */

%Y Cf. A033686, A098098.

%K sign

%O 0,3

%A _Michael Somos_, Nov 22 2013