login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232354
Numbers k that divide sigma(k^2) where sigma is the sum of divisors function (A000203).
4
1, 39, 793, 2379, 7137, 13167, 76921, 78507, 230763, 238887, 549549, 692289, 863577, 1491633, 1672209, 2076867, 4317885, 7615179, 8329831, 10441431, 23402223, 24989493, 37776123, 53306253, 53695813, 55871145, 74968479, 83766969, 133854435, 144688401, 161087439, 189437391
OFFSET
1,2
COMMENTS
Squarefree terms are: 1, 39, 793, 2379, 76921, 230763, 8329831, 24989493, 53695813, 161087439, ... Quotients are: 1, 61, 873, 3783, 11737, 26543, 85563, 141911, 370773, 417263, 1155561, ... - Michel Marcus, Nov 23 2013
Many terms are also in sequence A069520, cf. A232067 for the intersection of these two sequences. - M. F. Hasler, Nov 24 2013
LINKS
Jose Arnaldo Bebita Dris, A new approach to odd perfect numbers via GCDs, arXiv:2202.08116 [math.NT], 2022.
FORMULA
A065764(a(n)) mod a(n) = 0.
MATHEMATICA
Select[Range[10^5], Divisible[DivisorSigma[1, #^2], #] &] (* Alonso del Arte, Dec 06 2013 *)
PROG
(PARI) isok(n) = (sigma(n^2) % n) == 0; \\ Michel Marcus, Nov 23 2013
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, Nov 22 2013
STATUS
approved