|
|
A227302
|
|
Numbers m such that m divides sigma(2*m).
|
|
6
|
|
|
1, 3, 12, 14, 60, 248, 336, 2160, 2340, 4064, 13104, 15120, 16380, 261888, 1089270, 4455360, 8714160, 10213632, 11784960, 16775168, 22766400, 45981824, 71495424, 98532480, 229909120, 689727360, 738152448, 4291822080, 4294934528, 5100118016, 7091219520
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
If m belongs to the sequence, then sigma(2*m)/m is an integer, so sigma(2*m)/(2*m) is either an integer or half of an integer, so 2*m is either perfect, multiperfect or hemiperfect. - Michel Marcus, Jul 09 2013
|
|
LINKS
|
Jinyuan Wang, Table of n, a(n) for n = 1..54
|
|
PROG
|
(PARI) is(n)=sigma(2*n)%n==0 \\ Charles R Greathouse IV, Nov 04 2016
|
|
CROSSREFS
|
Cf. A000203, A000396, A007691, A159907, A232702.
Cf. A141643, A055153, A141645, A159271, A160678. (hemiperfect numbers)
Sequence in context: A286386 A032918 A039945 * A201273 A221920 A349663
Adjacent sequences: A227299 A227300 A227301 * A227303 A227304 A227305
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Alex Ratushnyak, Jul 05 2013
|
|
STATUS
|
approved
|
|
|
|