OFFSET
1,1
COMMENTS
This sequence includes many terms but it is conjectured to be finite.
LINKS
Michel Marcus, Table of n, a(n) for n = 1..307
G. P. Michon, Multiperfect and hemiperfect integers
G. P. Michon, Multiplicative functions: Abundancy = sigma(n)/n
G. P. Michon and M. Marcus, Hemiperfect numbers of abundancy 13/2
Walter Nissen, Abundancy: Some Resources
EXAMPLE
a(1) = 2^23 3^9 5^2 7^5 11^5 13^2 17 19^3 31 37 43 61^2 97 181 241.
As the "sum of divisors" function (sigma) is a multiplicative function, sigma(a(1)) is the product of the values of sigma at the above prime powers, respectively given as follows, in factorized form:
sigma(a(1)) = (3^2 5 7 13 17 241) (2^2 11^2 61) (31) (2^3 3 19 43) (2^2 3^2 7 19 37) (3 61) (2 3^2) (2^3 5 181) (2^5) (2 19) (2^2 11) (3 13 97) (2 7 13) (2 7^2) (2 11^2).
a(1) belongs to the sequence because the latter product boils down to 13/2 times the former.
PROG
(PARI) is(n)=sigma(n, -1)==13/2 \\ Charles R Greathouse IV, Feb 21 2017
CROSSREFS
Cf. A000203 (sigma function, sum of divisors), A141643 (abundancy = 5/2), A055153 (abundancy = 7/2), A141645 (abundancy = 9/2), A159271 (abundancy = 11/2), A159907 (half-integral abundancy, "hemiperfect numbers"), A088912 (least numbers of given half-integer abundancy). A007691 (multiperfect numbers, abundancy is an integer), A000396 (perfect numbers, abundancy = 2), A005101 (abundant numbers, abundancy is greater than 2), A005100 (deficient numbers, abundancy is less than 2).
KEYWORD
nonn
AUTHOR
Gerard P. Michon, Jun 06 2009
STATUS
approved