OFFSET
1,1
COMMENTS
There are 8 forty-four-digit terms in the sequence. Further terms are obtained (a) by inserting at the center of these terms either any number of 0's (for 16914079504181797053273763831171860502859028, 46492964703403651468863122584458570244070436, 65181741002635316783463471248546280094182933) or any number of 9's (for the other five terms) and (b) by concatenating a term any number of times with itself and inserting an equal number of 0's at all junctures. Method (b) may be applied recursively to all terms. - Clarified by Ray Chandler, Oct 14 2017.
LINKS
Ray Chandler, Table of n, a(n) for n = 1..8
J. H. E. Cohn, Palindromic differences, Fibonacci Quart. 28 (1990), no. 2, 113-120.
FORMULA
n = f^8(n), n <> f^k(n) for k < 8, where f: x -> |x - reverse(x)|.
EXAMPLE
16914079504181797053273763831171860502859028 -> 65181741002635316783463471248546280094182933 -> 31253591994370732566027032487192660079464777 -> 46492905012258445857045034036514689840070436 -> 16914099886383117186009041817970531210859028 -> 65181701327124854628081026353167837688182933 -> 31253512653248719266062943707325665377464777 -> 46492964703403651468863122584458570244070436 -> 16914079504181797053273763831171860502859028
CROSSREFS
KEYWORD
nonn,base,changed
AUTHOR
Meritxell Vila Miñana, Sep 25 2017
EXTENSIONS
Terms ordered by Ray Chandler, Sep 27 2017
STATUS
approved