login
A292855
Expansion of 1/(1 - x - 2*x^2/(1 - 3*x^3 - 4*x^4/(1 - 5*x^5 - 6*x^6/(1 - 7*x^7 - 8*x^8/(1 - ...))))), a continued fraction.
1
1, 1, 3, 5, 11, 27, 63, 143, 341, 799, 1865, 4417, 10401, 24433, 57619, 135749, 319683, 753427, 1775207, 4182359, 9855389, 23222687, 54718921, 128937361, 303821873, 715906625, 1686933723, 3975020013, 9366551195, 22070960907, 52007117407, 122547413479, 288765804957, 680436157615
OFFSET
0,3
FORMULA
a(n) ~ c * d^n, where d = 2.35636016857596143712421472862749989350673596686819... and c = 0.353844135039289092297842723019941866883167102736... - Vaclav Kotesovec, Sep 25 2017
MATHEMATICA
nmax = 33; CoefficientList[Series[1/(1 - x + ContinuedFractionK[-2 k x^(2 k), 1 - (2 k + 1) x^(2 k + 1), {k, 1, nmax}]), {x, 0, nmax}], x]
CROSSREFS
Sequence in context: A088357 A369344 A204857 * A374572 A265941 A372099
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 25 2017
STATUS
approved