login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227301
Number of Hamiltonian circuits in a 2n node X 2n node square lattice, reduced for symmetry, where the orbits under the symmetry group of the square, D4, have 8 elements.
4
0, 0, 121, 578937, 58407351059, 134528360800075421, 7015812452559988037073365, 8235314565328229497795808499821534, 216740797236120772990968348272561831275923059, 127557553423846099192878370706037904215158660401579043097
OFFSET
1,3
EXAMPLE
When n = 3 there are 121 Hamiltonian circuits in a 6 X 6 square lattice where the orbits under the symmetry group of the square have 8 elements. One of these circuits is shown below with its 8 distinct transformations under rotation and reflection:
o__o__o__o__o__o o__o o__o o__o o__o__o__o__o__o
| | | | | | | | | |
o__o__o__o o__o o o o o o o o__o__o o__o__o
| | | | | | | | | |
o__o__o__o o__o o o__o o o o o__o__o o__o__o
| | | | | | | |
o__o__o o__o__o o o__o o__o o o__o o__o__o__o
| | | | | | | |
o__o__o o__o__o o o o o__o o o__o o__o__o__o
| | | | | | | | | |
o__o__o__o__o__o o__o o__o o__o o__o__o__o__o__o
.
o__o o__o o__o o__o__o__o__o__o o__o o__o o__o
| | | | | | | | | | | | | |
o o__o o o o o__o o__o__o__o o o o o__o o
| | | | | | | | | |
o o__o o__o o o__o o__o__o__o o o__o o__o o
| | | | | | | | | |
o o o o__o o o__o__o o__o__o o o__o o o o
| | | | | | | | | | | | | |
o o o o o o o__o__o o__o__o o o o o o o
| | | | | | | | | | | | | |
o__o o__o o__o o__o__o__o__o__o o__o o__o o__o
.
o__o__o__o__o__o o__o o__o o__o
| | | | | | | |
o__o__o o__o__o o o o o o o
| | | | | | | |
o__o__o o__o__o o o o o__o o
| | | | | |
o__o__o__o o__o o o__o o__o o
| | | | | |
o__o__o__o o__o o o__o o o o
| | | | | | | |
o__o__o__o__o__o o__o o__o o__o
CROSSREFS
KEYWORD
nonn,hard
AUTHOR
EXTENSIONS
a(4) from Giovanni Resta, Jul 11 2013
a(5)-a(10) from Ed Wynn, Feb 05 2014
STATUS
approved