login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337728
a(n) = (4*n+1)! * Sum_{k=0..n} 1 / (4*k+1)!.
6
1, 121, 365905, 6278929801, 358652470233121, 51516840824285500441, 15640512874253077933887601, 8915467710633236496186345872425, 8755702529258688898174686554391144001, 13878488965077362598718732163634314533105081, 33731389859841228248933904149069928786421237268881
OFFSET
0,2
FORMULA
E.g.f.: (1/2) * (sin(x) + sinh(x)) / (1 - x^4) = x + 121*x^5/5! + 365905*x^9/9! + 6278929801*x^13/13! + ...
a(n) = floor(c * (4*n+1)!), where c = (sin(1) + sinh(1)) / 2 = A334363.
MATHEMATICA
Table[(4 n + 1)! Sum[1/(4 k + 1)!, {k, 0, n}], {n, 0, 10}]
Table[(4 n + 1)! SeriesCoefficient[(1/2) (Sin[x] + Sinh[x])/(1 - x^4), {x, 0, 4 n + 1}], {n, 0, 10}]
Table[Floor[(1/2) (Sin[1] + Sinh[1]) (4 n + 1)!], {n, 0, 10}]
PROG
(PARI) a(n) = (4*n+1)!*sum(k=0, n, 1/(4*k+1)!); \\ Michel Marcus, Sep 17 2020
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 17 2020
STATUS
approved