login
A363233
Number of partitions of n with rank a multiple of 4.
3
1, 0, 1, 1, 3, 1, 5, 4, 10, 8, 16, 17, 29, 29, 48, 53, 81, 89, 130, 149, 208, 238, 325, 381, 506, 592, 770, 910, 1165, 1374, 1738, 2057, 2571, 3038, 3761, 4451, 5461, 6447, 7855, 9270, 11219, 13214, 15899, 18703, 22386, 26276, 31306, 36691, 43525, 50902, 60149, 70221, 82679, 96325
OFFSET
1,5
FORMULA
G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k-1)/2) * (1-x^k) * (1+x^(4*k)) / (1-x^(4*k)).
MAPLE
b:= proc(n, i, c) option remember; `if`(i>n, 0, `if`(i=n,
`if`(irem(i-c, 4)=0, 1, 0), b(n-i, i, c+1)+b(n, i+1, c)))
end:
a:= n-> b(n, 1$2):
seq(a(n), n=1..54); # Alois P. Heinz, May 23 2023
PROG
(PARI) my(N=60, x='x+O('x^N)); Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k-1)/2)*(1-x^k)*(1+x^(4*k))/(1-x^(4*k))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 23 2023
STATUS
approved