login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363231
Number of partitions of n with rank 4 or higher (the rank of a partition is the largest part minus the number of parts).
2
0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 21, 29, 40, 53, 72, 94, 124, 161, 209, 267, 343, 435, 551, 693, 870, 1084, 1351, 1672, 2066, 2542, 3121, 3815, 4658, 5664, 6875, 8319, 10049, 12102, 14553, 17452, 20894, 24959, 29766, 35420, 42089, 49911, 59100, 69856, 82452, 97152, 114324, 134315
OFFSET
1,7
COMMENTS
In general, for r>=0, Sum_{k>=1} (-1)^(k-1) * p(n - k*(3*k + 2*r - 1)/2) ~ exp(Pi*sqrt(2*n/3)) / (8*n*sqrt(3)) * (1 - (1/(2*Pi) + (12*r-5)*Pi/144) / sqrt(n/6)), where p() is the partition function. - Vaclav Kotesovec, May 26 2023
LINKS
FORMULA
G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k+7)/2).
a(n) = p(n-5) - p(n-13) + p(n-24) - ... + (-1)^(k-1) * p(n-k*(3*k+7)/2) + ..., where p() is A000041().
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*n*sqrt(3)) * (1 - (1/(2*Pi) + 43*Pi/144) / sqrt(n/6)). - Vaclav Kotesovec, May 26 2023
EXAMPLE
a(7) = 2 counts these partitions: 7, 6+1.
MATHEMATICA
Table[Count[IntegerPartitions[n], _?(#[[1]]-Length[#]>3&)], {n, 60}] (* Harvey P. Dale, Jul 29 2024 *)
PROG
(PARI) a(n) = sum(k=1, sqrtint(n), (-1)^(k-1)*numbpart(n-k*(3*k+7)/2));
CROSSREFS
With rank r or higher: A064174 (r=0), A064173 (r=1), A123975 (r=2), A363230 (r=3), this sequence (r=4).
Sequence in context: A261775 A036007 A027342 * A184643 A307547 A182804
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 22 2023
STATUS
approved