login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363230
Number of partitions of n with rank 3 or higher (the rank of a partition is the largest part minus the number of parts).
2
0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 14, 21, 28, 39, 51, 70, 90, 120, 154, 201, 256, 330, 415, 529, 662, 833, 1035, 1293, 1595, 1976, 2425, 2982, 3640, 4449, 5401, 6565, 7935, 9592, 11543, 13891, 16645, 19943, 23808, 28408, 33792, 40172, 47619, 56413, 66661, 78708, 92724, 109149, 128213, 150486, 176293
OFFSET
1,6
LINKS
FORMULA
G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k+5)/2).
a(n) = p(n-4) - p(n-11) + p(n-21) - ... + (-1)^(k-1) * p(n-k*(3*k+5)/2) + ..., where p() is A000041().
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*n*sqrt(3)) * (1 - (1/(2*Pi) + 31*Pi/144) / sqrt(n/6)). - Vaclav Kotesovec, May 26 2023
EXAMPLE
a(6) = 2 counts these partitions: 6, 5+1.
PROG
(PARI) a(n) = sum(k=1, sqrtint(n), (-1)^(k-1)*numbpart(n-k*(3*k+5)/2));
CROSSREFS
With rank r or higher: A064174 (r=0), A064173 (r=1), A123975 (r=2), this sequence (r=3), A363231 (r=4).
Sequence in context: A035995 A036006 A027341 * A262371 A359683 A184642
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 22 2023
STATUS
approved