login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184642
Number of partitions of n having no parts with multiplicity 7.
8
1, 1, 2, 3, 5, 7, 11, 14, 22, 29, 41, 54, 75, 97, 130, 168, 222, 283, 368, 465, 597, 750, 949, 1183, 1488, 1841, 2292, 2822, 3487, 4267, 5239, 6376, 7782, 9429, 11439, 13798, 16661, 20007, 24043, 28763, 34420, 41021, 48894, 58066, 68956, 81627, 96592
OFFSET
0,3
LINKS
FORMULA
a(n) = A000041(n) - A183564(n).
a(n) = A183568(n,0) - A183568(n,7).
G.f.: Product_{j>0} (1-x^(7*j)+x^(8*j))/(1-x^j).
EXAMPLE
a(7) = 14, because 14 partitions of 7 have no parts with multiplicity 7: [1,1,1,1,1,2], [1,1,1,2,2], [1,2,2,2], [1,1,1,1,3], [1,1,2,3], [2,2,3], [1,3,3], [1,1,1,4], [1,2,4], [3,4], [1,1,5], [2,5], [1,6], [7].
MAPLE
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
add((l->`if`(j=7, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> (l-> l[1]-l[2])(b(n, n)):
seq(a(n), n=0..50);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, Sum[Function[l, If[j == 7, {l[[1]], l[[1]]}, l]][b[n - i*j, i - 1]], {j, 0, n/i}]]];
a[n_] := b[n, n][[1]] - b[n, n][[2]];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
Table[Count[IntegerPartitions[n], _?(FreeQ[Length/@Split[#], 7]&)], {n, 0, 50}] (* Harvey P. Dale, Sep 21 2024 *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 18 2011
STATUS
approved