login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184644
Number of partitions of n having no parts with multiplicity 9.
8
1, 1, 2, 3, 5, 7, 11, 15, 22, 29, 42, 55, 76, 99, 133, 172, 227, 290, 376, 477, 612, 769, 975, 1217, 1528, 1895, 2359, 2907, 3592, 4400, 5403, 6584, 8034, 9742, 11823, 14272, 17234, 20713, 24897, 29803, 35674, 42542, 50719, 60272, 71592, 84794
OFFSET
0,3
LINKS
FORMULA
a(n) = A000041(n) - A183566(n).
a(n) = A183568(n,0) - A183568(n,9).
G.f.: Product_{j>0} (1-x^(9*j)+x^(10*j))/(1-x^j).
MAPLE
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
add((l->`if`(j=9, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> (l-> l[1]-l[2])(b(n, n)):
seq(a(n), n=0..50);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, Sum[Function[l, If[j == 9, {l[[1]], l[[1]]}, l]][b[n - i*j, i - 1]], {j, 0, n/i}]]];
a[n_] := b[n, n][[1]] - b[n, n][[2]];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 18 2011
STATUS
approved