login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182805
Number of 10-core partitions of n.
3
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 32, 46, 57, 71, 85, 106, 121, 147, 165, 190, 242, 267, 302, 350, 400, 443, 511, 565, 638, 715, 774, 852, 964, 1038, 1135, 1253, 1372, 1482, 1650, 1785, 1878, 2098, 2234, 2411, 2625, 2819, 2963, 3249, 3393, 3600, 4004, 4181
OFFSET
0,3
LINKS
FORMULA
G.f.: Product_{i>=1} (1-x^(10*i))^10/(1-x^i).
Euler transform of period 10 sequence [1,1,1,1,1,1,1,1,1,-9, .. ].
MAPLE
with(numtheory): A:= proc(n, t) option remember; local d, j; `if`(n=0, 1, add(add(`if`(t=0 or irem(d, t)=0, d-d*t, d), d=divisors(j)) *A(n-j, t), j=1..n)/n) end: seq(A(n, 10), n=0..50);
MATHEMATICA
A[n_, t_] := A[n, t] = Module[{d, j}, If[n == 0, 1, Sum[Sum[If[t == 0 || Mod[d, t] == 0, d - d t, d], {d, Divisors[j]}] A[n - j, t], {j, 1, n}]/n]];
Table[A[n, 10], {n, 0, 50}] (* Jean-François Alcover, Dec 06 2020, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 03 2010
STATUS
approved