The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A309058 Partitions of n with parts having at most 3 distinct magnitudes. 4
 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 54, 72, 91, 115, 145, 177, 215, 258, 308, 364, 424, 491, 568, 651, 742, 838, 940, 1065, 1181, 1320, 1454, 1619, 1757, 1957, 2124, 2329, 2510, 2763, 2934, 3244, 3432, 3752, 3964, 4329, 4531, 4965, 5179, 5627, 5872, 6391, 6577, 7178, 7405 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Partitions whose Ferrers diagrams do not contain the pattern 4321 under removal of rows and columns (as defined by Bloom and Saracino). LINKS J. Bloom and D. Saracino, Rook and Wilf equivalence of integer partitions, arXiv:1808.04238 [math.CO], 2018. J. Bloom and D. Saracino, Rook and Wilf equivalence of integer partitions, European J. Combin., 71 (2018), 246-267. FORMULA G.f.: Sum_{i>=1} x^i/(1-x^i) + Sum_{j=1..i-1} x^(i+j)/((1-x^i)*(1-x^j)) + Sum_{k=1..j-1} x^(i+j+k)/((1-x^i)*(1-x^j)*(1-x^k)). a(n) = Sum_{k=0..3} A116608(n,k). - Alois P. Heinz, Jul 11 2019 EXAMPLE a(10) = 41 because all of the 42 integer partitions of 10 count (i.e., 10 = 10, 10 = 9+1 = 8+1+1, etc.), except the partition 10 = 4+3+2+1. MAPLE b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1, 0,       `if`(t=1, `if`(irem(n, i)=0, 1, 0)+b(n, i-1, t),        add(b(n-i*j, i-1, t-`if`(j=0, 0, 1)), j=0..n/i))))     end: a:= n-> b(n\$2, 3): seq(a(n), n=0..100);  # Alois P. Heinz, Jul 11 2019 MATHEMATICA b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i < 1, 0, If[t == 1, If[Mod[n, i] == 0, 1, 0] + b[n, i - 1, t], Sum[b[n - i*j, i - 1, t - If[j == 0, 0, 1]], {j, 0, n/i}]]]]; a[n_] := b[n, n, 3]; a /@ Range[0, 100] (* Jean-François Alcover, Feb 27 2020, after Alois P. Heinz *) CROSSREFS Cf. A265250 (partitions of n with parts having at most 2 distinct magnitudes). Sum of A002134, A002133 and A000005. Cf. A116608. Sequence in context: A184644 A209039 A182805 * A218509 A026815 A008638 Adjacent sequences:  A309055 A309056 A309057 * A309059 A309060 A309061 KEYWORD nonn AUTHOR Nathan McNew, Jul 09 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 23:17 EDT 2020. Contains 337175 sequences. (Running on oeis4.)