The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A175595 Square array A(n,t), n>=0, t>=0, read by antidiagonals: A(n,t) is the number of t-core partitions of n. 10
 1, 1, 1, 1, 0, 2, 1, 1, 0, 3, 1, 1, 0, 0, 5, 1, 1, 2, 1, 0, 7, 1, 1, 2, 0, 0, 0, 11, 1, 1, 2, 3, 2, 0, 0, 15, 1, 1, 2, 3, 1, 1, 1, 0, 22, 1, 1, 2, 3, 5, 3, 2, 0, 0, 30, 1, 1, 2, 3, 5, 2, 3, 0, 0, 0, 42, 1, 1, 2, 3, 5, 7, 6, 3, 1, 0, 0, 56, 1, 1, 2, 3, 5, 7, 5, 5, 4, 2, 1, 0, 77, 1, 1, 2, 3, 5, 7, 11, 9, 7, 4, 2, 0, 0, 101 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS A partition of n is a t-core partition if none of the hook numbers associated to the Ferrers-Young diagram is a multiple of t. See Chen reference for definitions. REFERENCES Garvan, F. G., A number-theoretic crank associated with open bosonic strings. In Number Theory and Cryptography (Sydney, 1989), 221-226, London Math. Soc. Lecture Note Ser., 154, Cambridge Univ. Press, Cambridge, 1990. James, Gordon; and Kerber, Adalbert, The Representation Theory of the Symmetric Group. Addison-Wesley Publishing Co., Reading, Mass., 1981. LINKS Alois P. Heinz, Antidiagonals n = 0..140, flattened G. E. Andrews and F. Garvan, Dyson's crank of a partition, Bull. Amer. Math. Soc., 18 (1988), 167-171. A. O. L. Atkins and F. G. Garvan, Relations between the ranks and cranks of partitions, arXiv:math/0208050 [math.NT], 2002. A. O. L. Atkins and F. G. Garvan, Relations between the ranks and cranks of partitions, Rankin memorial issues. Ramanujan J. 7 (2003), 343-366. Shichao Chen, Arithmetical properties of the number of t-core partitions, The Ramanujan Journal, 18 (2007), no. 1, 103-112, DOI: 10.1007/s11139-007-9045-5. F. G. Garvan, The crank of partitions mod 8, 9 and 10, Trans. Amer. Math. Soc. 322 (1990), 79-94. F. G. Garvan, Some congruences for partitions that are p-cores, Proc. London Math. Soc. 66 (1993), 449-478. F. G. Garvan, More cranks and t-cores, Bull. Austral. Math. Soc. 63 (2001), 379-391. F. G. Garvan, D. Kim and D. Stanton, Cranks and t-cores, Inventiones Math. 101 (1990) 1-17. Andrew Granville and Ken Ono, Defect Zero p-blocks for Finite Simple Groups, Transactions of the American Mathematical Society, Vol. 348 (1996), pp. 331-347. Ben Kane, Sums of Triangular Numbers and t-Core Partitions, Journal of Combinatorics and Number Theory, 1 (2009), no.1, 59-64. B. Kim, On inequalities and linear relations for 7-core partitions, Discrete Math., 310 (2010), 861-868. N. J. A. Sloane, Transforms. FORMULA G.f. of column t: Product_{i>=1} (1-x^(t*i))^t/(1-x^i). Column t is the Euler transform of period t sequence [1, .., 1, 1-t, ..]. EXAMPLE A(4,3) = 2, because there are 2 partitions of 4 such that no hook number is a multiple of 3: (1) 2 | 4 1 +1 | 2 +1 | 1 -------+----- (2) 3 | 4 2 1 +1 | 1 Square array A(n,t) begins: 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 0, 1, 1, 1, 1, 1, 1, ... 2, 0, 0, 2, 2, 2, 2, 2, ... 3, 0, 1, 0, 3, 3, 3, 3, ... 5, 0, 0, 2, 1, 5, 5, 5, ... 7, 0, 0, 1, 3, 2, 7, 7, ... 11, 0, 1, 2, 3, 6, 5, 11, ... 15, 0, 0, 0, 3, 5, 9, 8, ... MAPLE with(numtheory): A:= proc(n, t) option remember; `if`(n=0, 1, add(add(`if`(t=0 or irem(d, t)=0, d-d*t, d), d=divisors(j))*A(n-j, t), j=1..n)/n) end: seq(seq(A(n, d-n), n=0..d), d=0..14); (From N. J. A. Sloane, Jun 21, 2011: to get M terms of the series for t-core partitions:) M:=60; f:=proc(t) global M; local q, i, t1; t1:=1; for i from 1 to M+1 do t1:=series(t1*(1-q^(i*t))^t, q, M); t1:=series(t1/(1-q^i), q, M); od; t1; end; # then for example seriestolist(f(5)); MATHEMATICA n = 13; f[t_] = (1-x^(t*k))^t/(1-x^k); f[0] = 1/(1-x^k); s[t_] := CoefficientList[ Series[ Product[ f[t], {k, 1, n}], {x, 0, n}], x]; m = Table[ PadRight[ s[t], n+1], {t, 0, n}]; Flatten[ Table[ m[[j+1-k, k]], {j, n+1}, {k, j}]] (* Jean-François Alcover, Jul 25 2011, after g.f. *) CROSSREFS Columns t=0-12 give A000041, A000007, A010054, A033687, A045831, A053723, A081622, A053724, A182803, A182804, A182805, A053691, A192061. Rows n=0-1 give A000012, A060576. Diagonal gives A000094(n+1) for n>0. Upper diagonal gives A000041. Lower diagonal (conjectured) gives A086642 for n>0. Sequence in context: A143810 A128589 A130162 * A175417 A136481 A100218 Adjacent sequences: A175592 A175593 A175594 * A175596 A175597 A175598 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, Dec 03 2010 EXTENSIONS Additional references from N. J. A. Sloane, Jun 21 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 12:57 EDT 2023. Contains 363050 sequences. (Running on oeis4.)