|
|
A175595
|
|
Square array A(n,t), n>=0, t>=0, read by antidiagonals: A(n,t) is the number of t-core partitions of n.
|
|
10
|
|
|
1, 1, 1, 1, 0, 2, 1, 1, 0, 3, 1, 1, 0, 0, 5, 1, 1, 2, 1, 0, 7, 1, 1, 2, 0, 0, 0, 11, 1, 1, 2, 3, 2, 0, 0, 15, 1, 1, 2, 3, 1, 1, 1, 0, 22, 1, 1, 2, 3, 5, 3, 2, 0, 0, 30, 1, 1, 2, 3, 5, 2, 3, 0, 0, 0, 42, 1, 1, 2, 3, 5, 7, 6, 3, 1, 0, 0, 56, 1, 1, 2, 3, 5, 7, 5, 5, 4, 2, 1, 0, 77, 1, 1, 2, 3, 5, 7, 11, 9, 7, 4, 2, 0, 0, 101
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,6
|
|
COMMENTS
|
A partition of n is a t-core partition if none of the hook numbers associated to the Ferrers-Young diagram is a multiple of t. See Chen reference for definitions.
|
|
REFERENCES
|
Garvan, F. G., A number-theoretic crank associated with open bosonic strings. In Number Theory and Cryptography (Sydney, 1989), 221-226, London Math. Soc. Lecture Note Ser., 154, Cambridge Univ. Press, Cambridge, 1990.
James, Gordon; and Kerber, Adalbert, The Representation Theory of the Symmetric Group. Addison-Wesley Publishing Co., Reading, Mass., 1981.
|
|
LINKS
|
F. G. Garvan, D. Kim and D. Stanton, Cranks and t-cores, Inventiones Math. 101 (1990) 1-17.
|
|
FORMULA
|
G.f. of column t: Product_{i>=1} (1-x^(t*i))^t/(1-x^i).
Column t is the Euler transform of period t sequence [1, .., 1, 1-t, ..].
|
|
EXAMPLE
|
A(4,3) = 2, because there are 2 partitions of 4 such that no hook number is a multiple of 3:
(1) 2 | 4 1
+1 | 2
+1 | 1
-------+-----
(2) 3 | 4 2 1
+1 | 1
Square array A(n,t) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 0, 1, 1, 1, 1, 1, 1, ...
2, 0, 0, 2, 2, 2, 2, 2, ...
3, 0, 1, 0, 3, 3, 3, 3, ...
5, 0, 0, 2, 1, 5, 5, 5, ...
7, 0, 0, 1, 3, 2, 7, 7, ...
11, 0, 1, 2, 3, 6, 5, 11, ...
15, 0, 0, 0, 3, 5, 9, 8, ...
|
|
MAPLE
|
with(numtheory):
A:= proc(n, t) option remember; `if`(n=0, 1,
add(add(`if`(t=0 or irem(d, t)=0, d-d*t, d),
d=divisors(j))*A(n-j, t), j=1..n)/n)
end:
seq(seq(A(n, d-n), n=0..d), d=0..14);
(From N. J. A. Sloane, Jun 21, 2011: to get M terms of the series for t-core partitions:)
M:=60;
f:=proc(t) global M; local q, i, t1;
t1:=1;
for i from 1 to M+1 do
t1:=series(t1*(1-q^(i*t))^t, q, M);
t1:=series(t1/(1-q^i), q, M);
od;
t1;
end;
# then for example seriestolist(f(5));
|
|
MATHEMATICA
|
n = 13; f[t_] = (1-x^(t*k))^t/(1-x^k); f[0] = 1/(1-x^k);
s[t_] := CoefficientList[ Series[ Product[ f[t], {k, 1, n}], {x, 0, n}], x]; m = Table[ PadRight[ s[t], n+1], {t, 0, n}]; Flatten[ Table[ m[[j+1-k, k]], {j, n+1}, {k, j}]] (* Jean-François Alcover, Jul 25 2011, after g.f. *)
|
|
CROSSREFS
|
Columns t=0-12 give A000041, A000007, A010054, A033687, A045831, A053723, A081622, A053724, A182803, A182804, A182805, A053691, A192061.
Diagonal gives A000094(n+1) for n>0.
Lower diagonal (conjectured) gives A086642 for n>0.
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|