

A175592


Numbers n whose prime factors can be partitioned into two disjoint sets whose sums are both (sum of primes dividing n (with repetition))/2.


3



4, 9, 16, 25, 30, 36, 49, 64, 70, 72, 81, 84, 100, 120, 121, 144, 169, 196, 225, 240, 256, 270, 280, 286, 288, 289, 308, 324, 336, 361, 378, 400, 440, 441, 480, 484, 495, 525, 528, 529, 540, 576, 594, 625, 630, 646, 648, 672, 676, 728, 729, 750, 756, 784
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Alternatively, the two sets of prime factors have an equal sum.  Christian N. K. Anderson, Apr 16 2013
Superset of even powers, p^(2*i) where p is a prime number (A056798), and composites thereof.  Christian N. K. Anderson, Apr 16 2013


LINKS

Christian N. K. Anderson, Table of n, a(n) for n = 1..10000
Christian N. K. Anderson, Equal sum partitions of prime factors of a(n).


EXAMPLE

a(1)=4 because 4=2*2 and 2=2, a(2)=9 because 9=3*3 and 3=3, a(3)=16 because 16=2*2*2*2 and 2+2=2+2, a(4)=25 because 25=5*5 and 5=5, a(5)=30 because 30=2*3*5 and 2+3=5.


PROG

(Haskell)
a175592 n = a175592_list !! (n1)
a175592_list = filter (z 0 0 . a027746_row) $ [1..] where
z u v [] = u == v
z u v (p:ps) = z (u + p) v ps  z u (v + p) ps
 Reinhard Zumkeller, Apr 18 2013


CROSSREFS

Cf. A001414, A083207.
Cf. A056798.
Cf. A027746, A221054.
Sequence in context: A266918 A086132 A010433 * A331219 A126589 A010409
Adjacent sequences: A175589 A175590 A175591 * A175593 A175594 A175595


KEYWORD

nonn


AUTHOR

JuriStepan Gerasimov, Jul 20 2010


EXTENSIONS

Corrected by Christian N. K. Anderson, Apr 16 2013


STATUS

approved



