login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126589
Numbers n>1 such that prime of the form (n^k-1)/(n-1) does not exist for k>2; or A128164(n) = 0.
2
4, 9, 16, 25, 32, 36, 49, 64, 81, 100, 121, 125, 144, 169, 196, 216, 225, 243, 256, 289, 324, 343, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1000, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1728, 1764, 1849, 1936, 2025
OFFSET
1,1
COMMENTS
Appears to be the union of the perfect squares k^2 (for k>1) and the prime powers p^k (for k>1) with some exceptions, such as 2^3, 3^3, 2^7, etc.
The perfect powers except those of the form n^(p^m) where p and (n^(p^(m+1))-1)/(n^(p^m)-1) are primes, p>2 and m>=1. - Max Alekseyev, Mar 09 2009
LINKS
H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930.
Eric Weisstein's World of Mathematics, Repunit.
EXAMPLE
A128164 begins with offset 2: {3, 3, 0, 3, 3, 5, 3, 0, 19, 17, 3, 5, 3, 3, 0, 3, ...}. Thus a(1) = 4, a(2) = 9, a(3) = 16.
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Mar 13 2007
EXTENSIONS
Extended by Max Alekseyev, Mar 09 2009
STATUS
approved