OFFSET
1,1
COMMENTS
Numbers n such that (n mod 3)*(n mod 5) = 0 and n mod 15 > 0.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1).
FORMULA
a(n) = a(n-1) + a(n-6) - a(n-7). - Charles R Greathouse IV, Oct 11 2013
EXAMPLE
3, 5, 6, 9, 10, 12, (not 15), 18, 20, 21, 24, 25, 27, (not 30), 33, etc.
MATHEMATICA
s={}; Do[m3=Mod[n, 3]; m5=Mod[n, 5]; m15=Mod[n, 15]; If[m3*m5==0&&m15>0, AppendTo[s, n]], {n, 200}]; s
PROG
(PARI) is(n)=isprime(gcd(n, 15)) \\ Charles R Greathouse IV, Oct 11 2013
(Magma) I:=[3, 5, 6, 9, 10, 12, 18]; [n le 7 select I[n] else Self(n-1) + Self(n-6) - Self(n-7): n in [1..70]]; // G. C. Greubel, Mar 06 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Zak Seidov, Mar 13 2007
STATUS
approved